Masterarbeit

Maneuver identification in urban traffic using machine learning

Xiaoman Liu

Supervisor: Thilo Braun

Examiner: Prof. Dr-Ing. Eric Sax

Contents

- Motivation
- State of the art
- Datasets
- Experiment
- Conclusion
- Outlook

Motivation

- Validate autonomous driving algorithms in simulation platform
- Different cases can be created in simulation platform by quantitative modification of driving data
- For realistic simulation, real-world knowledge is needed
- Require abstract forms of description for different driving maneuvers in urban area
- Thesis: investigate methods to identify the driving maneuvers in recorded real world

Motivation

- Maneuver Identification to understand the recorded data
- Investigate the performance of neural networks for this task

- Motivation
- State-of-the-art
 - Convolutional Neural Network
 - Residual Neural Network (ResNet)
 - Fully Convolutional Networks (FCN)
 - Recurrent Neural Network
 - Long Short Term Memory (LSTM)
 - Bidirectional Long Short-Term Memory (Bi-LSTM)
- Datasets
- Experiment
- Conclusion
- Outlook

- Different Methods of Maneuver Identification
 - Rule-based (already implemented)
 - Machine Learning (great performance in many problems) → Master thesis
- Different Machine Learning Methods
 - Unsupervised learning
 - Understand patterns behind input data
 - Reinforcement learning
 - An agent interacts with the environment & learn from errors or reward
 - Supervised learning
 - Learn the mapping function from the input to the output
 - → Master thesis

Criterions	Supervised	Unsupervise	Reinforcemen
	Learning	d learning	t learning
Data	Labeled data	Unlabeled data	No predefined data
Problem type	Classification &	Clustering &	Rewards
	Regression	Association	based
Real time learning	Offline	Real time	Real time

Criterions	LSTM	Bi-LSTM	Resnet	FCN
Accuracy	+	+	+	+
Space/ Time	0	0	+	+

+ best

o medium

- worst

^[1] Zhiguang Wang etc. Time Series Classification from Scratch with Deep Neural Networks: A Strong Baseline

^[2] E. Shelhamer, J. Long, and T. Darrell. "Fully Convolutional Networks for Semantic Segmentation

- Widely used in image captioning, speech recognition
- Overcome the problem of vanishing gradients
- Learning long-term dependencies
 - Input gate
 - Forget gate
 - Output gate

- Widely used in machine translation, speech recognition
- Overcome the problem of vanishing gradient
- Train with using all available input information in the past and future of a specific time frame[3]
- [1] Zachary C. Lipton etc. A Critical Review of Recurrent Neural Networks for Sequence Learning
- [2] Alex Graves etc. Hybrid Speech Recognition With Deep Bidirectional Lstm
- [3] Mike Schuster and Kuldip K. Paliwal, Bidirectional Recurrent Neural Networks

Datasets

- Motivation
- State-of-the-art
- Datasets
 - Format
 - Challenges
 - Class imbalance
 - Variable length sequence
 - Data preprocessing
- Experiment
- Conclusion
- Outlook

Overview

Feature engineering

Datasets

- Challenges
 - Data imbalance
 - Variable length sequence
- Data preprocessing

Models

- FCN
- ResNet
- LSTM
- Bi-LSTM

Evaluate methods

- Accuracy
- Precision
- Recall
- F1-score
- Confusion Matrix

Datasets 1 - INTERACTION dataset - Format

- Interaction dataset visualization – in urban scene
- Total 724 samples
- 18 features (numerical variable + categorical variable)
- 4 labels (lane + preceding + turn + vehicle state)

Preceding maneuver

Vehicle speed

Vehicle state maneuver

Relative distance

Datasets 2 - FZI dataset - Format

- FZI dataset visualization in urban scene
- Total 699 samples
- 14 features
- 2 labels (lateral maneuver + longitudinal maneuver) labeled from rule based algorithm

Numerical variable

Categorical variable

List of maneuvers

Lateral maneuver	NoneLat	HoldLane	ChangLane	CrossStraight	TurnLeft	TurnRlght	CrossRoad
Longitudinal maneuver	NoneLong	CruiseFree	Follow	Approach	Stop	Standstill	

Datasets - Challenges

Class imbalance

Result in poor performance of model: tend to classify all samples to majority class

Lateral m	Lateral maneuver		Longitudina I maneuver	Number
None	NoneLat		NoneLong	99085
Chang	ChangeLane		CruiseFree	31817
	CrossStraight	14991		
CrossJunction	TurnLeft	1257	Follow	1548
	TurnRight	3108		
CrossRoad		1430	Approach	1415
HoldLane		97474	Stop	1167
			StandStill	4695

Lateral maneuver:70% HoldLane, 1 % CrossRoad

Longitudinal maneuver: 71% NoneLong, 1 % Stop

Variable sequence length

Sequence length in a batch should be consistent

- Maximum: 777
- Minimum: 16
- 90 % of sequence length are in range 0-300

Datasets - Challenges - Solution

Class imbalance - Solution

- Data
- Evaluation methods
- Model

Aspect	Solution	Status
	Get more small sample data	×
Data	Upsampling Downsampling	×
	create new features	√
	Weighted loss function	√
	Precision	√
Evaluation methods	Recall	√
	F1-score	√
Model	Change model	√

Variable sequence length - Solution

- LSTM model
 - Padding 0 + masking layer
 - Padding value do not update the weights
- FCN model
 - Padding 0 to the same length

Datasets - Data preprocessing

Numerical variables Normalization

- Optimization of the loss function is based on the gradient descent method
- Normalization speeds up convergence

Categorical variables —Onehot encoding

- Transform categorical variables into a vector from the Euclidean space
- For computing distances between features or similarities between features
- Easily compute distances in Euclidean space

Туре	1	2	3
Car - 1	1	0	0
Ped - 2	0	1	0
Bike - 3	0	0	1

Datasets - Feature engineering

- Process of using domain knowledge to extract powerful features from raw data via data mining techniques
- Feature engineering
 - Onehot encoding on categorical variable
 - Data normalization numerical variable
 - Add new features:
 - Polar angle
 - Sample type
 - Feature relabeling
 - RoadID
 - LaneID
 - Forward selection algorithm for feature selection

Row data performance

Features	Precision	Recall	F1- score	Accuracy
Time, PosX, PosY, sCoordinate, tCoordinate, speed, Yaw, roadID, LaneID, tLane, roadYaw, heading	0.2352	0.2696	0.2512	0.7102
Time, PosX, PosY, sCoordinate, tCoordinate, speed, Yaw, roadID, LaneID, tLane, roadYaw, heading (with onehot encoding)	0.5182	0.5548	0.5341	0.7936
Time, sCoordinate, tCoordinate, roadID,laneID, Sample type (with onehot encoding)	0.5668	0.5181	0.5327	0.7730
Time,sCoordinate, tCoordinate, roadID, laneID, roadYaw, heading, Sample type (with onehot encoding)	0.6652	0.7103	0.6633	0.8188
Time,sCoordinate, tCoordinate, roadID, laneID, roadYaw, heading, Sample type (with onehot encoding, with weighted loss and data normalization)	0.6919	0.7148	0.6929	0.8394
Time,sCoordinate, tCoordinate, roadID, laneID, roadYaw, heading, Sample type (with onehot encoding,with weighted loss and data normalization, relabelled laneid)	0.6190	0.6944	0.6403	0.8531
Time,sCoordinate, tCoordinate, roadID, laneID, roadYaw, heading, Sample type (with onehot encoding, with weighted loss and data normalization, relabelled laneid, relabelled roadid)	0.6200	0.7322	0.6458	0.8693
Time,sCoordinate, tCoordinate, roadID, laneID, tlane , roadYaw, heading, Sample type (with onehot encoding,with weighted loss and data normalization, relabelled laneid, relabelled roadid)	0.6585	0.7136	0.6657	0.8844
Time,sCoordinate, tCoordinate, roadID, laneID, polar angle, roadYaw, heading, Sample type (with onehot encoding,,with weighted loss and data normalization, relabelled laneid, relabelled roadid)	0.6992	0.7290	0.6882	0.8730

Datasets

Experiments

- Motivation
- State-of-the-art
- Datasets
- Experiments
 - Interaction dataset
 - FZI dataset
- Conclusion
- Outlook

- Training dataset: 456 samples, Test dataset268 samples
- Lane Maneuver:
 - no_lane
 - follow_lane
 - lane_change
- Selected sample covers as many maneuvers as possible

methods	precision	recall	f1-score	accuracy
FCN	0.7435	0.5251	0.5904	0.9343
ResNet	0.7164	0.5542	0.6103	0.9363
LSTM	0.6826	0.5167	0.5664	0.9305
Bi-LSTM	0.7528	0.7149	0.7314	0.9467

- Training dataset: 456 samples, Test dataset268 samples
- Preceding Maneuver:
 - no_preceding
 - follow
 - approach
- Selected sample covers as many maneuvers as possible

methods	precision	recall	f1-score	accuracy
FCN	0.9119	0.9252	0.9185	0.9600
ResNet	0.9229	0.9545	0.9382	0.9738
LSTM	0.8953	0.8942	0.8947	0.9524
Bi-LSTM	0.9150	0.9343	0.9239	0.9620

- Training dataset: 456 samples, Test dataset268 samples
- Turn Maneuver:
 - no junction
 - turn left
 - turn_right
- Selected sample covers as many maneuvers as possible

methods	precision	recall	f1-score	accuracy
FCN	0.9073	0.9090	0.9081	0.9556
ResNet	0.9338	0.9175	0.9250	0.9695
LSTM	0.9092	0.8691	0.8878	0.9472
Bi-LSTM	0.9305	0.9178	0.9236	0.9614

- Training dataset: 456 samples, Test dataset268 samples
- Vehicle state Maneuver:
 - halt
 - standstill
 - driveaway
 - keep_velocity
 - accelerate
 - decelerate
- Selected sample covers as many maneuvers as possible

methods	precision	recall	f1-score	accuracy
FCN	0.7075	0.7205	0.7129	0.7420
ResNet	0.7473	0.7385	0.7414	0.7806
LSTM	0.6498	0.6464	0.6442	0.6708
Bi-LSTM	0.8804	0.8800	0.8795	0.8828

Experiments - FZI dataset

- Lateral maneuver classification
- Training dataset: 559 samples, Test dataset 140 samples

methods	precision	recall	f1-score	accuracy
FCN	0.7216	0.7821	0.7282	0.8635
ResNet	0.7037	0.7328	0.7179	0.8787
LSTM	0.6993	0.7290	0.6882	0.8730
Bi-LSTM	0.6612	0.6567	0.6589	0.8536

- Longitudinal maneuver classification
- Training dataset: 559 samples, Test dataset140 samples

methods	precision	recall	f1-score	accuracy
FCN	0.6180	0.6176	0.6135	0.8914
ResNet	0.6069	0.5839	0.5817	0.8785
LSTM	0.5605	0.5727	0.5644	0.8785
Bi-LSTM	0.5561	0.5739	0.5580	0.8942

FCN performance

Conclusion

- Motivation
- State-of-the-art
- Datasets
- Experiments
- Conclusion
- Outlook

Conclusion

- Time series classification models have successfully created based on state of art CNN (FCN, ResNet) and RNN (LSTM, Bi-LSTM) model
- ResNet can learn better feature expression compared to FCN due to the structure of short connections
- Bi-LSTM can learn the dependencies in sequences better than LSTM because it can use contextual information
- Overall, Bi-LSTM has the most stable performance in different classes

Average performance of the models

methods	precision	recall	f1-score	accuracy
FCN	0.8176	0.7700	0.7825	0.8980
ResNet	0.8301	0.7912	0.8037	0.9150
LSTM	0.7842	0.7316	0.7483	0.8752
Bi-LSTM	0.8697	0.8618	0.8646	0.9382

Average performance of the models

Future work

- Motivation
- State-of-the-art
- Datasets
- Experiments
- Conclusion
- Outlook

Outlook

- Use more data and other data to verify the generalization ability of the models
- Attention Mechanisms is a promising method, which extracts more critical and important information by assigning different weights to each part of the input
- Bi-LSTM can be merged with ResNet or FCN together to obtain a more stable and strong model

Thank you for your interest!

Xiaoman Liu

Supervisor: Thilo Braun

Examiner: Prof. Dr-Ing. Eric Sax

