
New Energy Vehicle Big Data Innovation and
Entrepreneurship Competition

EV battery charging energy prediction

Tongji University

Liu Xiaoman,Wang Xinjie,Tan Haiyu

2018/11/22

•Data analysis and cleaning
•Model design
•Algorithm structure
•Portability & Engineering Optimization

Catalog

Lognormally distributed

• The factors that affect
the charging energy
are not independent of
each other, and the
influence of various
factors on the
charging energy is
multipliative

• Low amount of data

Raw distribution of training set

data analysis

Lognormally distributed

• Many small energy
distribution points

The distribution of the training set energy after In(x+1) transformation

data analysis

Distribution of the positive part of the training set energy after In transformation

data analysis

Overcharge protection or charging phase conversion

Data cleaning

Energy distribution Box plot

缺失值检测

Missing values for all vehicle models.

Data cleaning is very important, as big
data often consists of a large amount of
problematic data.

Data cleaning

Anomaly correction and missing value imputation.

car_phase0.loc[(car_phase0.charge_end_U > 389) & (car_phase0.charge_end_I > -29), ['charge_end_soc']] = 100

Car4 ， 15-16 Using random forests and gradient boosting trees for anomaly correction and missing value imputation.
L-— Increas ing data preprocess ing workload had a moderate effect ; u l t imately , t ree a lgor i thms were chosen
for enhancement .

Car1-3

Data cleaning

Tree algorithms:
- Good at handling missing values
- Robust to outliers

Data preprocessing should align with
algorithm characteristics, avoiding
overengineering and the introduction
of artificial noise.

Increasing data preprocessing
workload had a moderate effect;
ultimately, tree algorithms were
chosen for enhancement.

The effective data volume remains
sufficient.

Car15-16

Data cleaning

Box plot of the minimum temperature distribution.

Data cleaning

 Anomaly correction

- For car15, `charge_min_temp` is a
continuous value and follows a normal
distribution; mean correction is used to
maintain the expected value.

- For car16, `charge_min_temp` is a continuous
value with a long-tail distribution; median
correction is used to avoid the impact of
outliers.

- Anomaly correction is performed using
random forests and gradient boosting trees.

- The monthly average is taken.

car15 car16

Data cleaning

Outliers ≠ Anomalies,
but they can
significantly affect data
distribution and impact
feature normalization,
while containing
exceptionally rich
information.

Some charging end
currents are recorded as 0,
especially for Car15 and
Car16.

Accompanying
anomalies:
End_soc = 0,
End_U = 0

Box plot of the end current distribution

Data cleaning

0 10 20 30 40 50 60 70

car14

Combine the new feature dsoc / charge_hour to eliminate
anomalies

0 10 20 30 40 50 60 70 80

car11

dsoc: Charging end soc - Charging start soc

30

25

20

15

10

5

0

30

25

20

15

10

5

0

Energy / dsocEnergy / dsoc

Data cleaning

Energy / dsoc

Energy / charging time

Charging time / dsoc

 In situations where the charging time is short and dsoc is small, the data distribution varies greatly, especially
for car12.

Data cleaning

•Data analysis and cleaning
•Model design
•Algorithm structure
•Portability & Engineering Optimization

Catalog

basic feature group

Original
features

representative feature group

Representative
features

tem
poral feature group

Temporal
features

Model design

Basic feature group

• Original features 12 dimensions
vehicle_id,
charge_start_time, charge_end_time
charge_start_soc, charge_end_soc,
charge_start_U, charge_end_U
charge_start_I, charge_end_I,
charge_max_temp, charge_min_temp，
mileage

Model design

Representative feature group

- More expressive features: 11 dimensions

- Difference features: `charge_hour`, `dsoc`, `dU`, `dtemp`

- Ratio features: `dU/dsoc`, `dsoc/hour`, `dmileage/soc`

- Memory features: `ddsoc`, `dmileage`

- Categorical features: `phase`, `charge_mode`

Model design

Temporal feature group.

- Temporal features of energy:

- Temporal features: `year`, `month`, `day`

- User habit features: `week`, `hour`, `night`

- Battery temporal features: `interval_min`, `sum_charg`

• one-hot encoding

Model design

Representative
features have a
stronger
correlation with
energy

Temporal
features are one-
hot encoded to
form a sparse
matrix

Model design

car12

Car12 cross-validation results with original features

Model design

Car12 cross-validation results with multi-dimensional features.

Model design

Generalized
features

select_list = [
'charge_hour',
'dsoc’,
'dsoc/hour',
'charge_min_temp',
'charge_end_U',
'charge_start_U',
'dU',
'charge_start_I',
'charge_end_I ’]

Regression methods require a large amount of
data in the training set. Even a dataset with
millions of entries cannot support training with
hundreds of dimensions. The limitation on the
number of features prevents full utilization of
the information, thereby affecting the accuracy
of the regression model.

S m a l l e n e r g y f e a t u r e s

select_list = [
'charge_hour',
'dsoc’,
'dtemp’,
'dU',
'charge_start_I',
'charge_end_I ’]

On the second to last day of the
finals, a small energy model was
introduced, and after coefficient
fusion, the performance improved
by 9%, achieving first place on that
day

Model design

gbm model
gbm_model = GradientBoostingRegressor(n_estimators=2000, max_depth=4,

min_samples_split=2, min_samples_leaf=2, max_features=‘auto‘, subsample=0.6,
learning_rate=0.008) # 少样本

gbm_model = GradientBoostingRegressor(n_estimators=2000, max_depth=4,
min_samples_split=15, min_samples_leaf=2, max_features='auto‘, subsample=0.6,
learning_rate=0.008) # 多样本

xgboost_model
xgboost_model = xgb.XGBRegressor(max_depth=3, min_child_weight=0.9,

gamma=0.0001,subsample=0.55, scale_pos_weight=1, learning_rate=0.008,
reg_alpha=0.001,colsample_bytree=0.9, booster='gbtree', n_estimators=3000) # 泛化

xgboost_model = xgb.XGBRegressor(max_depth=6, min_child_weight=0.9,
gamma=0.0001,subsample=0.55, scale_pos_weight=1, learning_rate=0.008,
reg_alpha=0.001,colsample_bytree=0.9, booster='gbtree', n_estimators=3000) # 深层

Model design

Model design

car12

Model design

car12

Energy /
dsoc

Energy /
charging
time

dsoc /
charging
time

Model design
Gaussian Mixture Model (GMM)

car12

New energy vehicles.

16 vehicles
Data segmented by vehicle model.

train_features[train_features['vehicle_id'].isin([1])]

car_train[car_train['charge_mode'].isin([0])]

First step: Separation

16 vehicles >

car_train[car_train['phase'].isin([0])]

Third step: Separation
/

Significantly different
charging power.

Model design

Different battery
systems

Data is fed into the
model.

Second step: Separation

Model design

car12

•Data analysis and cleaning
•Model design
•Algorithm structure
•Portability & Engineering Optimization

Catalog

A more robust standardization method is used for
outliers. Each feature is independently centered and
scaled, ensuring that outlier feature points do not
affect the standardization results while maintaining
their outlier characteristics.

xi − Q1 (x)

K-fold cross-validation and cross-training based on K-fold

Algorithm structure

Q3 x − Q1 (x)

Ridge Regression
Used for data with multicollinearity (highly correlated independent variables). L2 regularization penalty distributes
the weights during shrinkage, reducing the sum of squared weights.

Lasso Regression
When a set of predictor variables is highly correlated, Lasso helps with feature selection. L1
regularization penalty concentrates the weights during shrinkage, resulting in sparse solutions, and
extracts features for sparsity.

ElasticNet Regression
Use L1 to train and prioritize L2 as the regularization matrix. When there are multiple correlated
features, Lasso randomly selects one of them, while ElasticNet tends to select both.

SVM Regression
Suitable for high-dimensional feature spaces, it solves a convex quadratic programming problem and
is sensitive to missing values.

Gradient boosting
It can fit complex nonlinear relationships and flexibly handle various types of data, including continuous
and discrete values. There is dependency among weak learners, which makes it prone to overfitting.

XGboost
Handles samples with missing feature values, uses regularization to prevent overfitting, and supports
parallel processing.

Linear
algorithm

Ensemble
learning
algorithm

Algorithm structure

Ridge Regression

- Based on the optimization objective of minimizing the
sum of squared residuals using the least squares
method, an L2 regularization penalty term is introduced
to control the complexity of shrinkage, making the
weights more robust to collinear features.

- To shrink the weights, (α * weight) is added to the least
squares term to achieve a very low variance.

- L2 norm: Represents the square root of the sum of
squares of elements in vector x, similar to Euclidean
distance, measuring differences between vectors, such
as the sum of squared differences. The function of the
L2 norm is to prevent the model from becoming overly
complex to fit the training data, thus improving the
model's generalization ability.

Algorithm structure

 min w||xw − y||2
2

 + α||w||2
2

Ridge Regression min w||xw − y||2
2

 + α||w||2
2

Algorithm structure

- Based on the optimization objective of minimizing the sum of squared
residuals using the least squares method, an L1 regularization penalty
term is introduced to control the complexity of shrinkage. This often
results in sparse weights, achieving the effect of variable selection.

- L1 norm: Represents the sum of the absolute values of non-zero
elements in vector x, also known as the Manhattan distance or
minimum absolute error. It measures differences between vectors,
such as the sum of absolute errors. For vectors x1 and x2, the L1
norm can achieve feature sparsity by eliminating features that carry
no information.

The tangent point between the contour and the constraint region is
the optimal solution of the objective function. The Lasso constraint
region is a square, which allows for tangency with the coordinate
axes, resulting in some feature weights being zero and achieving
variable selection through sparsity.

In contrast, the Ridge method's constraint region is circular, with
tangency points only on the circumference and not with the
coordinate axes. Although it also shrinks the original coefficients,
none of the values in any dimension are zero, so the final model
retains all variables.

Lasso Regression

Algorithm structure

Lasso Regression

Algorithm structure

Fewer features, 10 dimensions More features, 20 dimensions

Algorithm structure

• Based on the optimization objective of minimizing the sum of squared
residuals using the least squares method, both L1 and L2 regularization
penalty terms are introduced to control the complexity of shrinkage. This is
managed through the `l1_ratio` and `alphas` parameters.

ElasticNet Regression

Algorithm structure

Support Vector Regression (SVR) can tolerate a deviation of ε between f(x)
and y. It constructs a margin band centered around f(x) with a width of 2ε. If
the training samples fall within this margin, the prediction is considered correct.

Data points outside the dashed region have residuals, which are the distances to
the boundary of the margin. Similar to linear models, the aim is to minimize
these residuals.

SVR transforms the actual problem into a high-dimensional feature space
through a nonlinear transformation. In this high-dimensional space, a linear
decision function is constructed to achieve a nonlinear decision function in the
original space. This elegantly solves the dimensionality problem, making the
algorithm's complexity independent of the sample dimensions.

Suitable for:

- High-dimensional feature spaces, remaining effective
even when the data dimensionality exceeds the number of
samples.
- Solving a convex quadratic programming problem,
which yields a global optimum and addresses the issue of
local extrema that cannot be avoided in neural network
methods.

SVR Regression

Not suitable for:

- The need to correctly choose
the kernel function.
- Sensitivity to missing data.

IIWII2

Algorithm structure

min w,b, ε i, iε̂
1
2

Ensemble learning combines base learners with different weights in a linear
combination, allowing well-performing learners to be reused. It calculates
pseudo-residuals based on the initial model, then builds a base learner to
explain these pseudo-residuals, reducing them in the gradient direction. The
base learner is then multiplied by a weight coefficient (learning rate) and
linearly combined with the original model to form a new model. This iterative
process continues to find a model that minimizes the expected value of the loss
function.

Suitable for:

- Fitting complex nonlinear relationships.
- Flexibly handling various types of data, including continuous and discrete values.

Not suitable for:

- Dependency among weak learners, which can lead to overfitting.
- Weak resistance to noise.

Gradient boosting

Fm+1 x = Fm x + ℎ x

Algorithm structure

XGboost

Ensemble learning combines predictions from multiple base learner
trees to obtain the final result. Initially, a tree is trained using the
training set and the true values (i.e., the correct answers). This tree
then predicts the training set, resulting in predicted values for each
sample. The difference between these predicted values and the true
values is the "residual." The next step involves training a second tree,
but instead of using the true values, the residuals are used as the target.
After training the two trees, you can calculate the residuals for each
sample again and proceed to train a third tree, continuing this process
iteratively.

n K

i k = 1

Not suitable for:

- Complex models.
- Poor interpretability.
- High maintenance costs.

Suitable for:

- Samples with missing feature values. XGBoost can automatically
learn the direction of splits for features with missing values.
- Regularization to prevent overfitting. XGBoost includes a
regularization term in the cost function to control model complexity.
- Parallel processing.

Algorithm structure

Ridge Regression
Used for data with multicollinearity (highly correlated independent variables). L2 regularization penalty distributes
the weights during shrinkage, reducing the sum of squared weights.

Lasso Regression
When a set of predictor variables is highly correlated, Lasso helps with feature selection. L1
regularization penalty concentrates the weights during shrinkage, resulting in sparse solutions, and
extracts features for sparsity.

ElasticNet Regression
Use L1 to train and prioritize L2 as the regularization matrix. When there are multiple correlated
features, Lasso randomly selects one of them, while ElasticNet tends to select both.

SVM Regression
Suitable for high-dimensional feature spaces, it solves a convex quadratic programming problem and
is sensitive to missing values.

Gradient boosting
It can fit complex nonlinear relationships and flexibly handle various types of data, including continuous
and discrete values. There is dependency among weak learners, which makes it prone to overfitting.

XGboost
Handles samples with missing feature values, uses regularization to prevent overfitting, and supports
parallel processing.

Linear
algorithm

Ensemble
learning
algorithm

Algorithm structure

Algorithm structure

car12

Car 10

Training set original data: 187
After data processing: 180
Feature dimensions: 9
Features: 'charge_hour', 'dsoc', 'dsoc/hour',
'charge_min_temp', 'charge_end_U',
'charge_start_U', 'dU', 'charge_start_I',
'charge_end_I'

Test set data: 14
Feature dimensions: 9 x1,1 … x1,9

: 、 :
x180,1 … x180,9

x145,1 … x145,9

: 、 :
x162,1 … x162,9

x163,1 … x163,9

: 、 :
x180,1 … x180,9

x19,1 … x19,9
: 、 :

x36,1 … x36,9

x37,1 … x37,9
: 、 :

x54,1 … x54,9

Algorithm structure

K-fold
Random
shuffle.

K-fold
10

:

x1,1 … x1,9

: 、 :
x180,1 … x180,9

x145,1 … x145,9

: 、 :
x162,1 … x162,9

x163,1 … x163,9

: 、 :
x180,1 … x180,9

x37,1 … x37,9
: 、 :

x54,1 … x54,9

:

x19,1 … x19,9
: 、 :

x36,1 … x36,9

x1,1 … x1,9

: 、 :
x18,1 … x18,9

t1,1 … t1,9

: 、 :
t14,1 … t1,9

tp1_1

:
tp1_14

predict

}

Algorithm structure

Model1k-fold1

K-fold
Random
shuffle.

p1

:
p18

predict

train

x19,1 … x19,9
: 、 :

x36,1 … x36,9

predict

}

predict

x1,1 … x1,9

: 、 :
x180,1 … x180,9

x145,1 … x145,9

: 、 :
x162,1 … x162,9

x37,1 … x37,9
: 、 :

x54,1 … x54,9

x1,1 … x1,9

: 、 :
x18,1 … x18,9

tp2_1

:
tp2_14

Algorithm structure

Model1k-fold2

p19

:
p36

train

:

K-fold
Random
shuffle.

:

Model1k-fold3

predict

predict

x1,1 … x1,9

: 、 :
x180,1 … x180,9

x19,1 … x19,9
: 、 :

x36,1 … x36,9

x37,1 … x37,9
: 、 :

x54,1 … x54,9

t1,1 … t1,9

: 、 :
t14,1 … t1,9

tp3_1

:
tp3_14

Algorithm structure

p37

:
p54

train
K-fold
Random
shuffle.

x1,1 … x1,9

: 、 :
x18,1 … x18,9

x19,1 … x19,9
: 、 :

x36,1 … x36,9

x37,1 … x37,9
: 、 :

x54,1 … x54,9
x1,1 … x1,9

: 、 :
x180,1 … x180,9

x145,1 … x145,9

: 、 :
x162,1 … x162,9 x163,1 … x163,9

: 、 :
x180,1 … x180,9

t1,1 … t1,9

: 、 :
t14,1 … t1,9

tp10_1

:
tp10_14

Algorithm structure

Model1k-fold10

p163

:
p180

predict

predict

train

:

K-fold
Random
shuffle.

T1 Ridge T2 Lasso T3 ElasticNet T4 xgb T5 gbm T6 svr

tp_ 1

⋮
tp_ 14

P 1 Ridge

p1
⋮

p180

P2 Lasso P3 ElasticNet P4 xgb P5 gbm P6 svr

p1
⋮

p180

model_level2 meta_regressor=lasso
meta_regressor=gbm

tpredict1

⋮
tpredict14

tp1_ 1

⋮
tp1_ 14

tp3_ 1

⋮
tp3_ 14

tp2_ 1

⋮
tp2_ 14

Algorithm structure

拼接 平均!
p1
⋮

p180

tp_ 1

⋮
tp_ 14

p37

⋮
p54

p19

⋮
p36

p1
⋮

p18

predict

train

!
P1 T1

⋮ ⋮

Algorithm structure

•Data analysis and cleaning
•Model design
•Algorithm structure
•Portability & Engineering Optimization

Catalog

Preliminary stage
Disadvantages:
- Long training time, difficult to find a global
optimum.
- Heavy model with poor responsiveness.
- Insufficient data volume to support the model.
- Model is significantly affected by data
distribution.

Final stage: Simplifying complexity.

- Faster training speed, in tens of seconds.

- Stronger interpretability with a lighter model and fusion algorithm.

- Greater robustness to differences in data distribution, suitable for a
wider range of data distributions.

- Simpler outlier handling by leveraging algorithm characteristics.

- Model is not sensitive to its own parameters, ensuring that score
remains high even with parameter changes within a certain range.

- Model is not sensitive to dataset changes, achieving leading scores
with less data consistently.

Preliminary stage:
Final B leaderboard rank: 2nd
Gap with 1st place: 0.002

- DNN: Deep Neural Network

- Complex Gradient Boosted
Trees

Portability & Engineering Optimization

Q3 x − Q1 (x)

Reasonable tree construction

Low-energy model features.
xi − Q1 (x)

Portability & Engineering Optimization

Portability & Engineering Optimization

Thoughts on engineering practice.

- Edge computing scenario: Based on linear models and
weak learners, it requires only small computational power
and cost to be applied on vehicles, and can complete
predictions in seconds.

- Cloud integration: Internet of Vehicles, where big data is
aggregated on a unified cloud platform to process similar
data distributions for different vehicle models together.

The type of data in new energy vehicles is
determined, and you cannot rely solely on
piling up data. The quality of data
preprocessing and the choice of model
algorithms are the core aspects.

Portability & Engineering Optimization

11月6 日 11月7 日 11月8 日 11月9 日

0.65

0.6

0.55

0.5

0.45

0.4

Final evaluation metrics.

New Energy Vehicle Big Data Innovation and
Entrepreneurship Competition

Electric Vehicle Power Battery Charging Energy
Prediction

Thank you to the judges and fellow students for
listening.

Thank you!

Speaker: Liu Xiaoman

