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Lognormally distributed

• The factors that affect 
the charging energy 
are not independent of 
each other, and the 
influence of various 
factors on the 
charging energy is 
multipliative

• Low amount of data

Raw distribution of training set 

data analysis



Lognormally distributed

• Many small energy 
distribution points

The distribution of the training set energy after In(x+1) transformation

data analysis



Distribution of the positive part of the training set energy after In transformation

data analysis



Overcharge protection or charging phase conversion

Data cleaning

Energy distribution Box plot



缺失值检测

Missing values for all vehicle models.

Data cleaning is very important, as big 
data often consists of a large amount of 
problematic data.

Data cleaning



Anomaly correction and missing value imputation.

car_phase0.loc[(car_phase0.charge_end_U > 389) & (car_phase0.charge_end_I > -29), ['charge_end_soc']] = 100

Car4 ， 15-16    Using random forests and gradient boosting trees for anomaly correction and missing value imputation.
L-— Increas ing data  preprocess ing workload had a  moderate  effect ;  u l t imately ,  t ree  a lgor i thms were  chosen 
for  enhancement .

Car1-3

Data cleaning



Tree algorithms:
- Good at handling missing values
- Robust to outliers

Data preprocessing should align with 
algorithm characteristics, avoiding 
overengineering and the introduction 
of artificial noise.

Increasing data preprocessing 
workload had a moderate effect; 
ultimately, tree algorithms were 
chosen for enhancement. 

The effective data volume remains 
sufficient.

Car15-16

Data cleaning



Box plot of the minimum temperature distribution.

Data cleaning



 Anomaly correction

- For car15, `charge_min_temp` is a 
continuous value and follows a normal 
distribution; mean correction is used to 
maintain the expected value.

- For car16, `charge_min_temp` is a continuous 
value with a long-tail distribution; median 
correction is used to avoid the impact of 
outliers.

- Anomaly correction is performed using 
random forests and gradient boosting trees.

- The monthly average is taken.

car15                       car16

Data cleaning



Outliers ≠ Anomalies, 
but they can 
significantly affect data 
distribution and impact 
feature normalization, 
while containing 
exceptionally rich 
information.

Some charging end 
currents are recorded as 0, 
especially for Car15 and 
Car16.

Accompanying 
anomalies: 
End_soc = 0, 
End_U = 0

Box plot of the end current distribution

Data cleaning
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car14

Combine the new feature dsoc / charge_hour to eliminate 
anomalies
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car11

dsoc: Charging end soc - Charging start soc
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Data cleaning



Energy / dsoc

Energy / charging time

Charging time / dsoc

         In situations where the charging time is short and dsoc is small, the data distribution varies greatly, especially 
for car12.

Data cleaning
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basic feature group

Original 
features

representative feature group

Representative 
features

tem
poral feature group

Temporal 
features

Model design



Basic feature group

•  Original features 12 dimensions
vehicle_id,
charge_start_time, charge_end_time      
charge_start_soc, charge_end_soc,          
charge_start_U, charge_end_U
charge_start_I, charge_end_I,
charge_max_temp, charge_min_temp， 
mileage

Model design



Representative feature group

- More expressive features: 11 dimensions

- Difference features: `charge_hour`, `dsoc`, `dU`, `dtemp`

- Ratio features: `dU/dsoc`, `dsoc/hour`, `dmileage/soc`

- Memory features: `ddsoc`, `dmileage`

- Categorical features: `phase`, `charge_mode`

Model design



Temporal feature group.

- Temporal features of energy:

- Temporal features: `year`, `month`, `day`

- User habit features: `week`, `hour`, `night`

- Battery temporal features: `interval_min`, `sum_charg`

• one-hot encoding

Model design



Representative 
features have a 
stronger 
correlation with 
energy

Temporal 
features are one-
hot encoded to 
form a sparse 
matrix

Model design

car12



Car12 cross-validation results with original features

Model design



Car12 cross-validation results with multi-dimensional features.

Model design



# Generalized 
features

select_list = [
'charge_hour',
'dsoc’,
'dsoc/hour',
'charge_min_temp',             
'charge_end_U',
'charge_start_U',
'dU',
'charge_start_I',
'charge_end_I ’ ]

Regression methods require a large amount of 
data in the training set. Even a dataset with 
millions of entries cannot support training with 
hundreds of dimensions. The limitation on the 
number of features prevents full utilization of 
the information, thereby affecting the accuracy 
of the regression model.

# S m a l l  e n e r g y  f e a t u r e s

select_list = [
'charge_hour',    
'dsoc’,
'dtemp’,
'dU',
'charge_start_I', 
'charge_end_I ’ ]

On the second to last day of the 
finals, a small energy model was 
introduced, and after coefficient 
fusion, the performance improved 
by 9%, achieving first place on that 
day

Model design



# gbm model
gbm_model = GradientBoostingRegressor(n_estimators=2000, max_depth=4,             

min_samples_split=2, min_samples_leaf=2, max_features=‘auto‘, subsample=0.6,         
learning_rate=0.008) # 少样本

gbm_model = GradientBoostingRegressor(n_estimators=2000, max_depth=4,
min_samples_split=15, min_samples_leaf=2, max_features='auto‘, subsample=0.6,       
learning_rate=0.008) # 多样本

# xgboost_model
xgboost_model = xgb.XGBRegressor(max_depth=3, min_child_weight=0.9,

gamma=0.0001,subsample=0.55, scale_pos_weight=1, learning_rate=0.008,
reg_alpha=0.001,colsample_bytree=0.9, booster='gbtree', n_estimators=3000) # 泛化

xgboost_model = xgb.XGBRegressor(max_depth=6, min_child_weight=0.9,
gamma=0.0001,subsample=0.55, scale_pos_weight=1, learning_rate=0.008,
reg_alpha=0.001,colsample_bytree=0.9, booster='gbtree', n_estimators=3000) # 深层

Model design



Model design

car12



Model design

car12



Energy / 
dsoc

Energy / 
charging 
time

dsoc / 
charging 
time

Model design
Gaussian Mixture Model (GMM)

car12



New energy vehicles.

16 vehicles
Data segmented by vehicle model.

train_features[train_features['vehicle_id'].isin([1])]

car_train[car_train['charge_mode'].isin([0])]

First step: Separation

16 vehicles                   >

car_train[car_train['phase'].isin([0])]

Third step: Separation
/

Significantly different 
charging power.

Model design

Different battery 
systems

Data is fed into the 
model.

Second step: Separation



Model design

car12
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A more robust standardization method is used for 
outliers. Each feature is independently centered and 
scaled, ensuring that outlier feature points do not 
affect the standardization results while maintaining 
their outlier characteristics.

xi   −  Q1 (x)

K-fold cross-validation and cross-training based on K-fold

Algorithm structure

Q3   x   − Q1 (x)



Ridge Regression
Used for data with multicollinearity (highly correlated independent variables). L2 regularization penalty distributes 
the weights during shrinkage, reducing the sum of squared weights.

Lasso Regression
When a set of predictor variables is highly correlated, Lasso helps with feature selection. L1 
regularization penalty concentrates the weights during shrinkage, resulting in sparse solutions, and 
extracts features for sparsity.

ElasticNet Regression
Use L1 to train and prioritize L2 as the regularization matrix. When there are multiple correlated 
features, Lasso randomly selects one of them, while ElasticNet tends to select both.

SVM Regression
Suitable for high-dimensional feature spaces, it solves a convex quadratic programming problem and 
is sensitive to missing values.

Gradient boosting
It can fit complex nonlinear relationships and flexibly handle various types of data, including continuous 
and discrete values. There is dependency among weak learners, which makes it prone to overfitting.

XGboost
Handles samples with missing feature values, uses regularization to prevent overfitting, and supports 
parallel processing.

Linear 
algorithm

Ensemble 
learning 
algorithm

Algorithm structure



Ridge Regression      

- Based on the optimization objective of minimizing the 
sum of squared residuals using the least squares 
method, an L2 regularization penalty term is introduced 
to control the complexity of shrinkage, making the 
weights more robust to collinear features.

- To shrink the weights, (α * weight) is added to the least 
squares term to achieve a very low variance.

- L2 norm: Represents the square root of the sum of 
squares of elements in vector x, similar to Euclidean 
distance, measuring differences between vectors, such 
as the sum of squared differences. The function of the 
L2 norm is to prevent the model from becoming overly 
complex to fit the training data, thus improving the 
model's generalization ability.

Algorithm structure

 min w||xw − y||2
2

  + α||w||2
2



Ridge Regression  min w||xw − y||2
2

  + α||w||2
2

Algorithm structure



- Based on the optimization objective of minimizing the sum of squared 
residuals using the least squares method, an L1 regularization penalty 
term is introduced to control the complexity of shrinkage. This often 
results in sparse weights, achieving the effect of variable selection.

- L1 norm: Represents the sum of the absolute values of non-zero 
elements in vector x, also known as the Manhattan distance or 
minimum absolute error. It measures differences between vectors, 
such as the sum of absolute errors. For vectors x1 and x2, the L1 
norm can achieve feature sparsity by eliminating features that carry 
no information.

The tangent point between the contour and the constraint region is 
the optimal solution of the objective function. The Lasso constraint 
region is a square, which allows for tangency with the coordinate 
axes, resulting in some feature weights being zero and achieving 
variable selection through sparsity.

In contrast, the Ridge method's constraint region is circular, with 
tangency points only on the circumference and not with the 
coordinate axes. Although it also shrinks the original coefficients, 
none of the values in any dimension are zero, so the final model 
retains all variables.

Lasso Regression 

Algorithm structure



Lasso Regression

Algorithm structure



Fewer features, 10 dimensions                                                 More features, 20 dimensions

Algorithm structure



• Based on the optimization objective of minimizing the sum of squared 
residuals using the least squares method, both L1 and L2 regularization 
penalty terms are introduced to control the complexity of shrinkage. This is 
managed through the `l1_ratio` and `alphas` parameters.

ElasticNet Regression 

Algorithm structure



Support Vector Regression (SVR) can tolerate a deviation of ε between f(x) 
and y. It constructs a margin band centered around f(x) with a width of 2ε. If 
the training samples fall within this margin, the prediction is considered correct. 

Data points outside the dashed region have residuals, which are the distances to 
the boundary of the margin. Similar to linear models, the aim is to minimize 
these residuals.

SVR transforms the actual problem into a high-dimensional feature space 
through a nonlinear transformation. In this high-dimensional space, a linear 
decision function is constructed to achieve a nonlinear decision function in the 
original space. This elegantly solves the dimensionality problem, making the 
algorithm's complexity independent of the sample dimensions.

Suitable for:

- High-dimensional feature spaces, remaining effective 
even when the data dimensionality exceeds the number of 
samples.
- Solving a convex quadratic programming problem, 
which yields a global optimum and addresses the issue of 
local extrema that cannot be avoided in neural network 
methods.

SVR Regression  

Not suitable for:

- The need to correctly choose 
the kernel function.
- Sensitivity to missing data.

IIWII2  

Algorithm structure

min w,b, ε i,  iε̂
1
2



Ensemble learning combines base learners with different weights in a linear 
combination, allowing well-performing learners to be reused. It calculates 
pseudo-residuals based on the initial model, then builds a base learner to 
explain these pseudo-residuals, reducing them in the gradient direction. The 
base learner is then multiplied by a weight coefficient (learning rate) and 
linearly combined with the original model to form a new model. This iterative 
process continues to find a model that minimizes the expected value of the loss 
function.

Suitable for:

- Fitting complex nonlinear relationships.
- Flexibly handling various types of data, including continuous and discrete values.

Not suitable for:

- Dependency among weak learners, which can lead to overfitting.
- Weak resistance to noise.

Gradient boosting 

Fm+1  x   = Fm   x   + ℎ  x

Algorithm structure



XGboost

Ensemble learning combines predictions from multiple base learner 
trees to obtain the final result. Initially, a tree is trained using the 
training set and the true values (i.e., the correct answers). This tree 
then predicts the training set, resulting in predicted values for each 
sample. The difference between these predicted values and the true 
values is the "residual." The next step involves training a second tree, 
but instead of using the true values, the residuals are used as the target. 
After training the two trees, you can calculate the residuals for each 
sample again and proceed to train a third tree, continuing this process 
iteratively.

n                                  K

i                                k = 1

Not suitable for:

- Complex models.
- Poor interpretability.
- High maintenance costs.

Suitable for:

- Samples with missing feature values. XGBoost can automatically 
learn the direction of splits for features with missing values.
- Regularization to prevent overfitting. XGBoost includes a 
regularization term in the cost function to control model complexity.
- Parallel processing.

Algorithm structure



Ridge Regression
Used for data with multicollinearity (highly correlated independent variables). L2 regularization penalty distributes 
the weights during shrinkage, reducing the sum of squared weights.

Lasso Regression
When a set of predictor variables is highly correlated, Lasso helps with feature selection. L1 
regularization penalty concentrates the weights during shrinkage, resulting in sparse solutions, and 
extracts features for sparsity.

ElasticNet Regression
Use L1 to train and prioritize L2 as the regularization matrix. When there are multiple correlated 
features, Lasso randomly selects one of them, while ElasticNet tends to select both.

SVM Regression
Suitable for high-dimensional feature spaces, it solves a convex quadratic programming problem and 
is sensitive to missing values.

Gradient boosting
It can fit complex nonlinear relationships and flexibly handle various types of data, including continuous 
and discrete values. There is dependency among weak learners, which makes it prone to overfitting.

XGboost
Handles samples with missing feature values, uses regularization to prevent overfitting, and supports 
parallel processing.

Linear 
algorithm

Ensemble 
learning 
algorithm

Algorithm structure



Algorithm structure

car12



Car 10

Training set original data: 187  
After data processing: 180  
Feature dimensions: 9  
Features: 'charge_hour', 'dsoc', 'dsoc/hour', 
'charge_min_temp', 'charge_end_U', 
'charge_start_U', 'dU', 'charge_start_I', 
'charge_end_I'

Test set data: 14  
Feature dimensions: 9 x1,1       …     x1,9

:       、     :
x180,1     …   x180,9

x145,1     …   x145,9

:       、      :
x162,1     …   x162,9

x163,1     …   x163,9

:       、     :
x180,1     …   x180,9

x19,1     …   x19,9
:      、     :

x36,1     …   x36,9

x37,1     …   x37,9
:      、     :

x54,1     …   x54,9

Algorithm structure

K-fold
Random 
shuffle.

K-fold
10

:



x1,1       …     x1,9

:       、     :
x180,1     …   x180,9

x145,1     …   x145,9

:       、     :
x162,1     …   x162,9

x163,1     …   x163,9

:       、     :
x180,1     …   x180,9

x37,1     …   x37,9
:      、     :

x54,1     …   x54,9

:

x19,1     …   x19,9
:      、     :

x36,1     …   x36,9

x1,1      …    x1,9

:      、     :
x18,1     …   x18,9

t1,1      …   t1,9

:      、    :
t14,1     …   t1,9

tp1_1

:
tp1_14

predict

}

Algorithm structure

Model1k-fold1

K-fold
Random 
shuffle.

p1

:
p18

predict

train



x19,1     …   x19,9
:      、     :

x36,1     …   x36,9

predict

}

predict

x1,1       …     x1,9

:       、     :
x180,1     …   x180,9

x145,1     …   x145,9

:       、     :
x162,1     …   x162,9

x37,1     …   x37,9
:      、     :

x54,1     …   x54,9

x1,1      …    x1,9

:      、     :
x18,1     …   x18,9

tp2_1

:
tp2_14

Algorithm structure

Model1k-fold2

p19

:
p36

train

:

K-fold
Random 
shuffle.



:

Model1k-fold3

predict

predict

x1,1       …     x1,9

:       、     :
x180,1     …   x180,9

x19,1     …   x19,9
:      、     :

x36,1     …   x36,9

x37,1     …   x37,9
:      、     :

x54,1     …   x54,9

t1,1      …   t1,9

:      、    :
t14,1     …   t1,9

tp3_1

:
tp3_14

Algorithm structure

p37

:
p54

train
K-fold
Random 
shuffle.



x1,1 … x1,9

: 、 :
x18,1 … x18,9

x19,1 … x19,9
: 、 :

x36,1 … x36,9

x37,1 … x37,9
: 、 :

x54,1 … x54,9
x1,1       …     x1,9

:       、     :
x180,1     …   x180,9

x145,1     …   x145,9

:       、     :
x162,1     …   x162,9 x163,1     …   x163,9

:       、     :
x180,1     …   x180,9

t1,1      …   t1,9

:      、    :
t14,1     …   t1,9

tp10_1

:
tp10_14

Algorithm structure

Model1k-fold10

p163

:
p180

predict

predict

train

:

K-fold
Random 
shuffle.



T1  Ridge T2  Lasso T3  ElasticNet T4  xgb T5  gbm T6  svr

tp_ 1

⋮
tp_ 14

P 1   Ridge

p1
⋮

p180

P2  Lasso P3  ElasticNet P4  xgb P5   gbm P6  svr

p1
⋮

p180

model_level2           meta_regressor=lasso
meta_regressor=gbm

tpredict1

⋮
tpredict14

tp1_ 1

⋮
tp1_ 14

tp3_ 1

⋮
tp3_ 14

tp2_ 1

⋮
tp2_ 14

Algorithm structure

拼接                      平均!
p1
⋮

p180

tp_ 1

⋮
tp_ 14

p37

⋮
p54

p19

⋮
p36

p1
⋮

p18

predict

train

!
P1 T1

⋮ ⋮



Algorithm structure
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Preliminary stage
Disadvantages:
- Long training time, difficult to find a global 
optimum.
- Heavy model with poor responsiveness.
- Insufficient data volume to support the model.
- Model is significantly affected by data 
distribution.

Final stage: Simplifying complexity.

- Faster training speed, in tens of seconds.

- Stronger interpretability with a lighter model and fusion algorithm.

- Greater robustness to differences in data distribution, suitable for a 
wider range of data distributions.

- Simpler outlier handling by leveraging algorithm characteristics.

- Model is not sensitive to its own parameters, ensuring that score 
remains high even with parameter changes within a certain range.

- Model is not sensitive to dataset changes, achieving leading scores 
with less data consistently.

Preliminary stage:  
Final B leaderboard rank: 2nd  
Gap with 1st place: 0.002

- DNN: Deep Neural Network

- Complex Gradient Boosted 
Trees

Portability & Engineering Optimization

Q3   x   − Q1 (x)

Reasonable tree construction

Low-energy model features.
xi   −  Q1 (x)



Portability & Engineering Optimization



Portability & Engineering Optimization



Thoughts on engineering practice.

- Edge computing scenario: Based on linear models and 
weak learners, it requires only small computational power 
and cost to be applied on vehicles, and can complete 
predictions in seconds.

- Cloud integration: Internet of Vehicles, where big data is 
aggregated on a unified cloud platform to process similar 
data distributions for different vehicle models together.

The type of data in new energy vehicles is 
determined, and you cannot rely solely on 
piling up data. The quality of data 
preprocessing and the choice of model 
algorithms are the core aspects.

Portability & Engineering Optimization

11月6 日                   11月7 日                   11月8 日                   11月9 日

0.65

0.6

0.55

0.5

0.45

0.4

Final evaluation metrics.



New Energy Vehicle Big Data Innovation and 
Entrepreneurship Competition

Electric Vehicle Power Battery Charging Energy 
Prediction

Thank you to the judges and fellow students for 
listening.

 
Thank you!

Speaker: Liu Xiaoman


