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Abstract—Forecasting CPU performance, which involves esti-
mating performance scores based on hardware characteristics
during operation, is crucial for computational system design and
resource management. This research field currently faces two
primary challenges. First, the diversity of CPU products and the
specialized nature of hardware characteristics make real-world
data collection difficult. Second, existing approaches, whether
reliant on hardware simulation models or machine learning,
suffer from significant drawbacks, such as lengthy simulation
cycles, low prediction accuracy, and neglect of characteristic
correlations. To address these issues, we first gathered, prepro-
cessed, and standardized historical data from the 4th Generation
Intel Xeon Scalable Processors across various benchmark suites
to create a new dataset named PerfCastDB. Subsequently, we
developed a novel network, MambaCPU (MaC), as the baseline
model for the PerfCastDB dataset. This model employs the
mamba structure to explore global dependencies and correlations
among multiple characteristics. The use of intra- and inter-group
attention mechanisms further refines correlations within and
between characteristic groups. These techniques enhance MaC’s
capability to analyze and mine complex multivariate correlations.
Comparative experiments on the PerfCastDB dataset demon-
strate that MaC surpasses existing methods, confirming its effec-
tiveness. Additionally, we have open-sourced part of the dataset
and the MaC code at https://github.com/xiaoman-liu/MaC to
facilitate further research..

Index Terms—CPU Performance Prediction, State Space, Deep
Learning, Mamba

I. INTRODUCTION

CPU performance prediction based on hardware character-
istics is crucial for optimizing computational system design
and resource management. It plays a pivotal role in tasks
ranging from hardware design to resource allocation, as it
allows for forecasting a CPU performance under various
operational conditions. This capability is indispensable not
only for CPU manufacturers, who seek to streamline the
design and prototyping process, but also for consumers and
enterprises that need to select the most suitable hardware
for their specific workloads. In summary, CPU performance
prediction possesses substantial theoretical research value and
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practical application significance, representing one of the most
valuable research areas.

Numerous studies have focused on understanding and pre-
dicting computer system performance. Early work [6], [14],
[20], [21] employed statistical and sampling methods to an-
alyze computer performance. Subsequently, research shifted
towards using machine learning methods [8], [15], [17], [18],
[25] for CPU performance prediction. The explosive growth of
deep learning in text [26], speech [10], and image recognition
[9] has introduced new avenues for performance prediction
[4]. Dibyendu et al. [3] developed the deep neural network
SpecNet, achieving high prediction accuracy. Yu Wang et al.
[27] demonstrated that deep neural network models signifi-
cantly outperform traditional linear models in benchmark per-
formance prediction. Michael et al. [23] utilized a long short-
term memory (LSTM) model for CPU and GPU performance
prediction.

CPU performance prediction remains a challenging field
due to several key limitations. First, the collection of real-
world data is hindered by the sheer variety of available CPU
products, each with highly specialized and diverse hardware
characteristics. As a result, the field lacks a unified dataset that
can comprehensively cover different hardware configurations
and benchmarks. Without such a standardized dataset, it be-
comes difficult to compare and evaluate the effectiveness of
different prediction models across varying CPU architectures.
Second, the previous approaches, ranging from hardware simu-
lation models to machine learning-based methods, suffer from
notable drawbacks. Hardware simulation models are often
computationally expensive, requiring lengthy test cycles that
limit their practicality for real-time applications. The machine
learning methods offer faster predictions but often struggle
with low accuracy and an inability to fully capture the complex
correlations between different hardware characteristics. These
methods typically treat the features as independent or fail to
exploit the intricate dependencies between them, which are
critical for accurate performance prediction.

According to the above analysis, we make contributions
from two aspects to promote the development of the CPU

ar
X

iv
:2

41
0.

19
29

7v
2 

 [
cs

.P
F]

  2
8 

O
ct

 2
02

4

https://xiaoman-liu.com/
https://github.com/xiaoman-liu/MaC


performance prediction field. First, we organize a novel dataset
for further research. Concretely, we collect the historical CPU
benchmark data of the 4th Generation Intel® Xeon® Scalable
Processors, including data samples with 83-dimensional the
hardware characteristics and the 1-dimensional correspond-
ing performance prediction scores under different benchmark
suites. Following the data cleaning, data standardization and
feature engineering processes, we can generate standard data
instances in the dataset. As a result, we organize a novel
CPU performance prediction dataset called PerfCastDB, each
instance contains 35 hardware characteristics, and 1 ground
truth prediction scores under 6 testing suites. For better under-
standing of the organized data, we provide a sub-benchmark
sample at the link Intel Sapphire Rapids sample. Second, we
present MaC, a state-of-the-art model designed to uncover
and leverage the complex dependencies between multiple
hardware characteristics. The MaC model is built on the
Mamba structure [2], [7], [28], [29], which is tailored to mine
global dependencies across multivariate data.

In general, the contributions of this article can be summa-
rized as:

• We organize a novel dataset called PerfCastDB, which
suits for the CPU performance prediction task. This
dataset offers comprehensive coverage of hardware char-
acteristics and performance benchmarks, providing a
solid foundation for future research in CPU performance
prediction

• We propose a novel network MambaCPU(MaC) under the
PerfCastDB dataset. MaC is built on the Mamba struc-
ture, which can leverage the complex dependencies and
global correlations between multiple hardware character-
istics. The intra- and inter-group attention mechanisms
are introduced to refine the group-wise correlations. The
comprehensively utilization of the character correlations
ensures the prediction accuracy and interpretability of the
MaC model.

• We compare the proposed MaC with several traditional
approaches. The experimental results show that MaC sig-
nificantly outperforms existing approaches, which evalu-
ates the effectiveness of MaC.

II. DATASET ORGANIZATION

Data was collected from Sapphire Rapids (SPR), the 4th
Generation Intel® Xeon® Scalable Processors based on In-
tel 7 technology [13], from September 27, 2022, to Oc-
tober 27, 2023. This dataset encompasses various stock-
keeping units within the SPR product line and employs
multiple testing suites, including SPECrate2017, Memory La-
tency Checker (MLC), Stream, and High Performance Conju-
gate Gradients (HPCG). The SPECrate suite [24] is divided
into "SPECrate2017_int_base" and "SPECrate2017_fp_base."
MLC [12] provides metrics on local and cross-socket latencies
and bandwidth, offering 9 levels of latency and 9 types of
bandwidth data. Stream [1] evaluates memory efficiency under
various scenarios, while HPCG [5] assesses the performance
and efficiency of high-performance computing systems.

We standardize the dataset through five key stages: outlier
cleaning, multi-output conversion, feature trimming, feature
expansion, and normalization/tokenization, resulting in a clean
and high-quality dataset for model training. In outlier cleaning,
we apply a z-score filtering method to remove data points with
z-scores exceeding a threshold (|z| > 3), where z = (x−µ)/σ.
Multi-output conversion consolidates six types of benchmark
performance data into a unified 11-dimensional vector, re-
ducing redundancy and improving training efficiency. Feature
trimming involves removing redundant and non-significant
hardware characteristics to enhance generalizability. Feature
expansion enriches memory-related features by extracting
detailed specifications using identifiers like "DIMM.PartNo"
from manufacturers such as Samsung [22], Hynix [11], and
Micron [19]. Finally, normalization and tokenization convert
categorical features into numerical tokens and scale numerical
features consistently, enhancing training efficiency and pre-
diction accuracy. For detailed data formats, refer to our open-
source code [16].

III. METHOD

A. State Space Model

State space methods provide a mathematical framework for
modeling. In a linear time-invariant system with input x(t),
state h(t), and output y(t), the system equations are expressed
as:

h′(t) = Ah(t) +Bx(t),

y(t) = Ch(t).
(1)

where A is the state matrix influencing the state rate of change,
B is the input matrix affecting the state, and C is the output
matrix determining the output from the state. Mamba has
discreted A and B into a structured state space model by a
timescale parameter ∆, the tranfornation by zero-order hold
(ZOH) can be defined as follows:

A = exp(∆A),

B = (∆A)−1(exp(∆A)− I) ·∆B.
(2)

Let A = eA∆, B = (∆A)−1(eA∆−I)∆B, then the previous
equations can be transformed into the following form:

h(tk+1) = Ah(tk) +Bx(tk)

y(tk+1) = Ch(tk+1).
(3)

Finally, through a global convolution operation, the output can
be calculated as follows:

K = (CB,CAB, . . . ,CA
k
B, . . .)

y(k) = x ∗K
(4)

B. Feature Division Module

In this module, input in Figure.1 features are categorized
into numerical and character features. Mamba blocks are then
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Fig. 1: MaC Architecture: Feature Extraction from Character and Numerical Inputs Using a Selective state Space with Mamba
Block and Multiple Attention Mechanisms

used for feature extraction from both categories, which is
defined as follows:

RMS Norm: x
(n)
1 = Proj(RMSNorm(x(n)))

Convolution: x
(n)
2 = Conv(x(n)

1 )

Selective SSM: x
(n)
3 = σ(SSM(x

(n)
2 ))

Projection: x
(n)
4 = Proj(x(n)

3 )

Multiplication: x
(n)
5 = x

(n)
4 · σ(x(n)

1 )

Addition: y(n) = x
(n)
5 + x(n)

(5)

where x(n) represents the n-th input, Proj denotes linear
projection, Conv is convolution, σ is the activation function,
SSM stands for the state space model, and y(n) is the n-th
final output.

C. Group Attention Module

Features from the Feature Division Module are categorized
into Char, CPU, Memory, and Other groups for specialized
processing. X is the attention input, the intra group attention
mechanism can be expressed by:

Self-Attention = softmax
(
Q(l)(K(l))T√

dk

)
V (l)

head(l)
i = Self-Attention(Q(l)

i ,K
(l)
i , V

(l)
i )

MultiHead(l) = Concat(head(l)
1 , . . . , head(l)

h )W
(l)
O

(6)

W
(l)
Q , W (l)

K , and W
(l)
V are trainable weight matrices for layer

l, with dk as the embedding dimension. The outputs of the

self-attention heads are concatenated and linearly transformed.
The inter-group attention mechanism mirrors the intra-group
mechanism, using the output of the intra-group attention
module. The final output is fed into a dense layer with units
equal to the number of benchmarks.

D. Loss Function

In this study, we utilize the huber loss instead of Mean
Absolute Error (MAE) or Mean Squared Error (MSE) due to
its robustness to outliers. The formula of huber loss can be
expressed by:

huber loss =
{

1
2
× (y − ŷ)2 for |y − ŷ| ≤ δ

δ ×
(
|y − ŷ| − 1

2
δ
)

otherwise
(7)

where y is the true value, ŷ is the predicted value, and δ is a
hyperparameter that determines the threshold for the transition
between the MAE and MSE loss functions.

IV. EXPERIMENTS

A. Data Splitting and Cross-Validation

We collect data across six suites, dividing it into 60% for
training, 20% for validation, and 20% for testing, as detailed
in Table I. To improve prediction, we fine-tuned MaC model
parameters for each suite. Using 5-fold cross-validation, we
based the final evaluation on the average results, which helps
prevent overfitting and optimizes hyperparameters for better
generalization.



TABLE I: the data distribution for the training, validation, and
testing sets on the perfcastdb dataset under different suites.

Suite Name TrainSet ValSet TestSet

SPECrate2017 Integer base 816 204 254
SPECrate2017 FP base 756 189 236
Memory Latency Checker Latency 140 35 42
Memory Latency Checker Bandwidth 922 230 294
Stream 2858 714 897
HPCG 2815 704 886

B. Evaluation Metrics

We utilize the MAE, MSE, and mean absolute percentage
error (MAPE) as the evaluation metrics. These metrics can be
defined as the following equations:

MAE =
1

n

n∑
i=0

|xi − x̂i|

MSE =
1

n

n∑
i=1

(xi − x̂i)
2

MAPE =
1

n

n∑
i=1

∣∣∣∣xi − x̂i

xi

∣∣∣∣
(8)

where xi is the ground truth, x̂i is the predicted value, and n is
the sample size. MAE quantifies average error in output units,
MSE is sensitive to outliers, and MAPE offers percentage-
based error interpretation.

C. Implementation Details

We conducted our experiments on NVIDIA GeForce RTX
4090 GPU using the Adam optimizer with an exponential
decay learning rate strategy. Our initial learning rate was set
at 0.001, utilizing a batch size of 1, and we trained the model
over 300 epochs.

D. Ablation Study

In this subsection, we conduct the ablation study to demon-
strate the effectiveness of each part in MaC. Specifically, the
main components in MaC are mamba blocks and attention
blocks. The results in Table. II indicate that the mamba-based
MaC method, which combines intra-group and inter-group
attention, performs best across all metrics.

TABLE II: Evaluating the impact of mamba block and inter-
group & intra-group attention mechanisms on model accuracy

Models MAE MAPE MSE Median SE

Mamba 7.23 1.51% 226.81 15.42
Mamba + intra-group attention 8.63 1.70% 349.33 24.49
MaC 5.90 1.18% 174.60 10.59
MaC w/o char-group 6.51 1.31% 184.71 12.83
MaC w/o mem-group 6.01 1.21% 121.52 12.09
MaC w/o cpu-group 6.22 1.23% 181.86 11.47
MaC w/o other-group 7.23 1.43% 201.94 15.32

E. Hyperparameters Study

In this subsection, we conduct the comparison experiments
on different settings of important hyperparameters, focusing
on the size of ∆ projection S, the number of attention layers

L, and the weight of huber loss δ on MAE, MSE, Median
SE and MAPE. Table. III presents the corresponding results
on "SPECrate2017_FP_base" suite. The results show that the
combination of proj=2, state=8, layer=3, head=4 and δ=10
performs best across almost all metrics.

When proj=4 and state=8, the MSE reached a group mini-
mum of 102.54, yet the MAE, Median SE, and MAPE were
not minimized. This suggests that low MSE alone does not
guarantee superior predictive performance, necessitating the
consideration of detailed SE metrics. As shown, the Median
SE for this setup exceeds that of proj=2. Additionally, SEs at
the 75%, 90%, and 95% percentiles were higher than those for
proj=4, though these are not presented due to space constraints.
This is due to MSE’s sensitivity to outliers present in the test
set. Therefore, in contexts like CPU performance prediction,
where outliers exist, careful metric selection is essential, as
MSE alone is inadequate.

TABLE III: Optimization of specrate2017 fp hyperparameters
on MAE, MSE, Median SE, and MAPE. The parameters proj,
state, layer, and head correspond to the expansion factor, state
vector dimension size, number of attention layers, and number
of attention heads, respectively.

Hyperparameter Value MAE MSE Median SE MAPE

proj=S, state=8

1 6.79 186.47 15.20 1.38%
2 5.90 174.60 10.59 1.18%
4 6.01 102.54 12.88 1.21%
8 6.48 144.43 15.31 1.33%

16 6.40 196.72 14.74 1.30%

proj=2, state=N

1 7.03 164.32 17.27 1.50%
2 6.47 175.96 13.83 1.32%
4 6.82 169.95 17.86 1.44%
8 5.90 174.60 10.59 1.18%

16 6.15 106.86 14.81 1.27%

layer=L, head=4
1 7.17 319.77 13.68 1.45%
2 6.12 136.69 12.52 1.25%
3 5.28 65.02 12.24 1.08%

layer=3, head=H

1 6.17 115.57 15.11 1.27%
2 6.22 223.80 10.92 1.25%
3 5.88 89.13 13.55 1.19%
4 5.28 65.02 12.24 1.08%
5 5.87 78.60 14.62 1.20%

δ
0.1 7.22 194.87 17.42 1.50%
1 6.95 204.39 15.58 1.41%

10 5.28 65.02 12.24 1.08%

F. Comparison of Prediction Performance

We compare our model with various methods, including ma-
chine learning and deep learning techniques. Lasso and Ridge
regression address multicollinearity, with ElasticNet combin-
ing their strengths. SVM performs well in high-dimensional
spaces, while XGB handles missing data and provides feature
importance. In deep learning, LSTM and GRU excel at learn-
ing long-term dependencies. Next, we present experimental
results comparing the performance of our MaC model with
these baseline methods. The corresponding results are shown
in Table.IV. As a result, MaC achieves the best evaluation
results on most suites, which directly reflects the superiority
of it.



TABLE IV: Comparison performance across six benchmarks,
including SPECrate2017 Integer base (S-Int), SPECrate2017
FP base (S-FP), Stream, HPCG, Memory Latency Checker La-
tency (MLC-L), Memory Latency Checker Bandwidth (MLC-
B).

Models S-Int S-FP Stream HPCG MLC-L MLC-B

MAE ↓

Lasso 9.49 11.45 12.92 4.01 3.68 3.56
Ridge 11.61 16.47 11.91 3.32 4.05 4.92
EN 23.32 22.24 28.52 5.21 5.61 6.94
SVM 21.53 19.06 9.31 3.13 4.18 3.52
XGB 7.81 6.29 4.48 3.31 3.66 1.24
LSTM 31.68 30.21 31.10 2.84 7.92 8.88
GRU 9.70 8.47 4.17 5.42 3.45 8.89
MaC 7.29 5.28 1.99 2.44 2.67 1.36

MAPE ↓

Lasso 2.42 2.50 3.20 5.74 3.49 4.63
Ridge 2.86 3.73 2.93 4.61 3.28 5.02
EN 5.94 4.70 7.03 7.87 5.68 8.78
SVM 5.44 3.68 2.44 4.38 3.81 3.01
XGB 1.99 1.32 1.08 4.30 3.05 0.87
LSTM 7.80 6.13 7.68 3.78 7.39 9.41
GRU 2.59 1.77 1.05 8.22 3.38 9.41
MaC 1.89 1.08 0.48 3.10 2.81 1.09

MSE ↓

Lasso 339.86 471.17 365.63 33.27 32.42 48.80
Ridge 620.16 995.37 446.59 31.03 40.73 814.41
EN 1160.41 868.87 1137.69 66.36 59.45 170.98
SVM 1520.52 902.13 322.29 21.16 54.64 149.03
XGB 233.81 97.11 98.48 22.61 43.75 12.09
LSTM 2027.33 1577.07 1378.09 12.86 113.81 377.25
GRU 1133.63 164.96 403.15 73.49 41.68 377.15
MaC 240.55 65.02 48.45 11.52 26.30 16.75

In Figure.2, we present the heatmaps for attention weights
within and between feature groups. Figure.2a illustrates the
intra-group attention for the CPU group, comprising 20 feature
sets, where lighter colors indicate stronger correlations. Fig-
ure.2b displays the inter-group attention across memory, CPU,
char, and other groups. These patterns highlight the capability
of the model to effectively capture and represent feature
interactions, demonstrating the ability of attention mechanism
to discern complex relationships.

(a) CPU Group (b) Inter Group

Fig. 2: Attention Matrix Visualization in CPU Intra-groups and
Inter-group of the First Head for a SPEC CPU 2017 FP Data
Sample

V. CONCLUSION

In this paper, we introduce PerfCastDB, a comprehensive
benchmark dataset specifically designed for CPU performance
prediction tasks. This dataset refines historical data to create a
model-ready training set. We also present MaC as a baseline
model, developed using mamba state-space equations com-
bined with group attention mechanisms to enhance prediction
accuracy. Extensive experiments demonstrate that MaC sur-
passes traditional methods, validating its effectiveness. Futher-
more, employing diverse metrics is essential for accurately
evaluating CPU performance prediction, particularly in the
presence of outliers. We aim for our work to establish a robust
foundation for future research in CPU performance prediction.
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